北京大数据分析培训带你了解关键的大数据分析技术和工具是什么
发布时间:2022-12-02 17:22:49
北京博为峰IT培训学校,依靠强大的项目优势与行业积累,将实际实战过程中需要的技术以及项目经验整理成培训教案,采用作品驱动式案例教学方法,为学员提供专业而且权威的就业培训教育。学校开设课程有:软件测试、Java全栈开发、大数据分析、Python全栈开发、web前端开发培训等。
欢迎感兴趣的同学来校咨询或者来电咨询:400-8780-760 亦或者微信详聊 微信:zypx8899
什么是大数据分析?
大数据分析就是指对规模巨大的数据进行数据分析,大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,而数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
关键的大数据分析技术和工具
虽然大数据分析通常被称为单个系统或解决方案,但它实际上由多个独立的技术和工具组成,这些技术和工具相辅相成,共同存储、移动、缩放和分析数据。它们可能因基础结构而有所不同,但下面是一些常见的大数据分析工具:
收集和存储
Hadoop。Apache Hadoop 是首批用于处理大数据分析需求的框架之一,它是一个开原生态系统,通过分布式计算环境存储和处理大数据集。 Hadoop 可根据你的需求纵向扩展或缩减,这使得它成为管理大数据的高度灵活且具有成本效益的框架。
NoSQL 数据库。传统数据库是关系数据库,与之不同的是,NoSQL 数据库不要求其数据类型遵循固定的架构或结构。 这使得它们能够支持各种类型的数据模型,在处理大量半结构化和原始数据时,这种特点非常有用。得益于其灵活性,NoSQL 数据库也被证明比关系数据库更快、更具伸缩性。NoSQL 的一些常见示例包括 MongoDB、Apache CouchDB 和 Azure Cosmos DB。
数据湖和数据仓库。从数据源中收集数据后,数据必须存储在集中的接收器中供进一步处理。 数据湖存储原始和非结构化数据,这些数据随后被准备好供不同应用程序使用,而数据仓库是一个系统,它从各种源中拉取结构化、预定义的数据,并处理该数据供操作使用。这两种方式有不同的功能,但它们通常一起组成一个组织良好的数据存储系统。
处理
数据集成软件。数据集成工具将来自不同平台的数据连接和整合到一个统一的中心,例如数据仓库,让用户能够集中访问数据挖掘、商业智能报告和操作目的所需的一切信息。
内存中数据处理。传统的数据处理基于磁盘,但内存中数据处理使用 RAM 或内存来处理数据。 这大幅提高了处理和传输速度,使得组织能够实时地收集见解。Apache Spark 之类的处理框架可在内存中执行批量处理和实时数据流处理。
清理
数据处理和清理工具。为了确保数据达到最优质量,数据清理工具会解决错误、修复语法错误、移除缺失值并清除重复数据。 这些工具随后会数据进行标准化和验证,使其为分析做好准备。
分析
数据挖掘。大数据分析通过数据挖掘等知识发现流程从数据中获取见解,这会从大数据集中提取基本模式。 通过旨在识别数据间显著关系的算法,数据挖掘可自动定义数据(结构化数据和非结构化数据)中的当前趋势。
预测分析。预测分析可帮助构建能预测模式和行为的分析模型。 这通过机器学习和其他类型的统计算法来实现,让你能够确定未来结果、改进操作和满足用户的需求。
实时分析。通过连接一系列可缩放的端到端流式处理管道,实时流式处理解决方案(例如 Azure 数据资源管理器)可实时存储、处理和分析你的跨平台数据,让你能够即时获得见解。